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Abstract— Calibration is the first and foremost step in deal-
ing with sensor displacement errors that can appear during
extended operation and off-time periods to enable robot object
manipulation with precision. In this paper, we present a novel
multiplanar self-calibration between the camera system and the
robot’s end-effector for 3D object manipulation. Our approach
first takes the robot end-effector as ground truth to calibrate the
camera’s position and orientation while the robot arm moves
the object in multiple planes in 3D space, and a 2D state-
of-the-art vision detector identifies the object’s center in the
image coordinates system. The transformation between world
coordinates and image coordinates is then computed using 2D
pixels from the detector and 3D known points obtained by robot
kinematics. Next, an integrated stereo-vision system estimates
the distance between the camera and the object, resulting
in 3D object localization. We test our proposed method on
the Baxter robot with two 7-DOF arms and a 2D detector
that can run in real time on an onboard GPU. After self-
calibrating, our robot can localize objects in 3D using an
RGB camera and depth image. The source code is available
at https://github.com/tuantdang/calib_cobot.

I. INTRODUCTION

Precisely manipulating objects in three-dimensional (3D)
space is essential in robotic applications and relies heavily
on the camera calibration process, including camera posi-
tion and orientation calibration. As the robot initializes, it
needs to know the relative pose between the sensor and
its end-effector to localize objects correctly in 3D and thus
identify its relative transformation to that object. However,
displacements between sensors and end-effectors can occur
due to mechanical vibration during the operation, sensor
deterioration, or human factors within the working environ-
ment during its off-operation time. Thus, the robot eventually
loses its knowledge about the relative sensor transformations.
For this reason, a multiplanar self-calibration process for
mobile cobots is a crucial part of manipulating objects in
3D precisely and efficiently (e.g., pick-and-place task).

Previous works mostly focus on single planar calibration
[1], [2], where the camera intrinsic and extrinsic matrices are
calibrated using a checkerboard as ground truth in the cali-
bration process. This technique incurs unexpected errors due
to human involvement when measuring the distance between
the camera and the end-effector as well as the misalignment
of the checkboard with respect to the image plane. Therefore,
the captured images might be sheared, leading to correlated
errors between cells on the checkerboard. Also, this method
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Fig. 1: Multiplanar self-calibration concept.

only helps the robot to precisely localize objects in a 2D
plane, which strictly only enables robot manipulation in a
fixed plane instead of in arbitrary planes of 3D space within
the reachable range of the robot arms.

Recent work proposes multiplanar calibration to manipu-
late 3D objects by using high-precision machines [3], [4], [5],
such as coordinate-milling machines, to obtain the accurate
ground truth. However, deploying an external component into
the robot system is impractical for robotic applications as
cameras could be replaced frequently in response to the needs
of the application changes. Thus a re-calibration process for
new cameras is needed. Furthermore, the proposed calibra-
tion processes are complicated, and require extra equipment,
making them impractical for robotic applications.

Self-calibration using proximity sensors [6] provides fully
automatic calibration, but this technique suffers from low
accuracy due to the lack of spatial information, where
only one dimension in space is considered. Other methods
estimate the extrinsic matrix without using ground truth [7],
[8] by exploring the input data and a probabilistic model.
Still, they are impractical and inefficient as they use rich
open datasets, requiring the collection of significant amounts
of data during calibration.

To fill this gap in camera calibration, we propose a multi-
planar self-calibration technique for mobile cobot 3D object
manipulation without extra devices (Fig. 1). Our method
includes estimating the transformation from camera and
robot coordinates to world coordinates and auto-calibrating
the scale factor projecting 3D objects onto the image plane.
In our calibration process, we only sample two reference
planes in 3D, then estimate the 3D points in the range of
those two reference planes (in the robot’s workspace).

In this work, we make the following contributions: we
(1) propose a method to fully auto-calibrate an RGB-D
camera on the mobile robot using a state-of-the-art 2D object
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Fig. 2: The calibration process includes intrinsic calibration, extrinsic calibration, and scale factor calibration.

detector without external hardware, (2) build comprehensive
software with sample synchronization using the Robot Op-
erating System (ROS) on distributed computers for mobile
cobots, and (3) train our 2D detector using two transfer
learning strategies and test 3D object manipulation on the
Baxter robot with two 7-DOF arms and RGB-D cameras. Our
key contribution is to build a fully automated calibration for
the robot system. Without using distributed computers and
the 2D transfer-learning-based detector, we cannot obtain a
fully working robot system. Hence, while focusing on the
key contribution, the two last contributions complement our
system for task-driven experiments and real-life applications.

II. RELATED WORK

Hand Eye Calibration: Mounting sensors, as well as
knowing their relative positions to the robot’s rigid body, is a
challenging task in robotics. Indeed, the task of determining
the pose transformation between sensors and the robot itself
is known as the hand-eye calibration problem [9], [10],
[7], [11]. In practice, calibration is not only needed after
mounting sensors on the robot but also before and after each
operation because of unexpected displacements during its
operation caused by mechanical vibration or human factors.
To estimate the camera pose, researchers concentrate on two
main methods, namely the marked and the unmarked method.
The marked method utilizes a known pattern as ground truth,
in which the camera detects the patterns knowing their world
positions [12], [13], [14]. This method is simple and highly
accurate as it is purposefully designed in a high-precision
setup; however, it requires extensive labor and is not well-
suited for real world robot applications due to frequent re-
calibration. On the other hand, the unmarked method does
not require a known pattern since it infers knowledge from
feature extraction and matching. However, this technique
requires powerful computation and gives lower accuracy
[15], [16]. In this work, we present a technique that achieves
accurate calibration results with less overhead (e.g., fewer
additional human-involved tasks) and enables the robot to
perform pick-and-place tasks in 3D space.

Robot Self-Calibration: Most self-calibration systems
need ground truth to estimate the sensor’s relative position

and orientation, while some do not since they can estimate
the ground truth using probabilistic models [7], [8]. Using
known patterns like a checkerboard as ground truth is well-
known in camera calibration applications [17], [18], [19],
while some other work uses extra devices as ground truth,
such as optical track [20], proximity [6], or IMU sensors
[21], to estimate the extrinsic transformation. In our work,
the ground truth is retrieved from the robot hand’s relative
position each time we sample a 3D-2D point pair, which
does not only ensure automation but also independence of
taking sample points in each plane (Sec. IV).

Transfer Learning-based 2D Detector & Depth Esti-
mation: 2D detectors using Convolutional Neural Networks
(CNNs) have recently been used in many robotic applications
due to fast and accurate detection. The two most common
approaches for 2D object detection are single-stage detection
[22], [23], and two-stage detection [24], [25]. As our design
aims to leverage the available hardware to run a real-
time 2D detector, we prefer the state-of-the-art single-stage
detector, and hence take advantage of the 2D bounding boxes
resulting from a 2D detector with an estimated depth from
the depth image [26] to reconstruct detected objects’ world
coordinates. Since this work is extended from [27], we use
similar strategies of transfer learning to detect in-lab objects
unavailable in the common datasets.

III. PROBLEM FORMALIZATION

A. Camera Extrinsic and Scale Factor Calibration

In our work, estimating objects’ poses in 3D space based
on their pixel coordinates on the image plane captured by a
pinhole-like camera model is mathematically written as:Xw

Yw

Zw

1

 = s ·

fx 0 cx
0 fy cy
0 0 1

−1 r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3

−1 uv
1

 (1)

where (Xw, Yw, Zw) represents the coordinates of the object
in the world coordinate system (note that Zw will be re-
estimated using the estimated depth), s is the scale factor,
rij and tk are coefficients of the rotation matrix, R, and
translation matrix, t, respectively, (fx, fy) indicates the focal
length of the camera, (cx, cy) is the center coordinates of
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Fig. 3: Robot frames and their kinematic transformations.

the image, and (u, v) represents the pixel coordinates of the
object on the image plane. The camera extrinsic matrix can
be also written in short form as [R|t].

To calibrate the mounted camera on a mobile cobot at
a certain depth, we obtain the intrinsic matrix from the
preprogrammed camera. Moving to calibration at multiple
depths, the scale factor, s, is important in scaling the coordi-
nates to minimize prediction errors. Therefore, we further use
projective geometry properties by exploiting the relationship
between si of plane pi at depth i and sj of plane pj at depth
j (Fig. 2). The relationship between the scale factor, s, at a
certain depth, d, is hypothetically modeled as:

s = f(d) = b0 + b1 · d (2)

We will further explain the camera extrinsic calibration
process and the relationship between scale factor and depth,
justify the minimum number of reference planes, and show
their involvement in the calibration process in Sec. IV-E.

B. 2D Object Detector

The two most popular approaches in 2D object detection
are single-stage and two-stage object detection. The single-
stage detection is faster in inference time but underperforms
two-stage detection in terms of precision. Similar to recent
attempts in building frameworks that support CNNs on low-
end computing devices, we utilize OpenVINO to run our
models on an onboard GPU. In our calibration method, we
utilize single-stage object detection since our design aims to
maintain real-time performance on the available hardware.

IV. IMPLEMENTATION

A. Transfer Learning for Object Detection

Most object detectors use rich datasets to train the detec-
tors to obtain high accuracy. This, however, limits their use
to objects within their datasets, potentially excluding task-
specific objects. If we collect a custom in-lab dataset and
train our own detector, the model may be over-fitted since it
cannot learn from a sufficiently rich feature domain. To solve
this problem, we select transfer learning strategies that allow
us to transfer feature knowledge from a model trained with
rich datasets such as MS COCO and PASCAL VOC. Here,
we model our transfer learning and address two questions:
(1) what to transfer from well-trained models to our custom
model, and (2) how to transfer that knowledge.

We define a domain as D = {X , P (X)} where X
represents the feature space, X = {x1, x2, ...} ∈ X , and
P (X) is its marginal distribution. Let T = {Y, P (Y |X)}
be the learning task that learns from training pairs (xi, yi)
with yi ∈ Y in the label space. The objective of transfer
learning is to improve the predictive function P (Yt|Xt) in the
target domain Dt = {Xt, P (Xt)} using knowledge from the
source domain Ds = {Xs, P (Xs)} and source learning task
Ts = {Ys, P (Ys|Xs)}. Let P (Y |X) = f(X,β) where f is
the task function. The minimizer for the trainable parameters,
β, is written in terms of the loss function, L(·, ·), and the
task function, f , as follows:

argminβ
∑
X

L [f (X,β) , Y ] (3)

To formally apply the transfer learning definition to the
ML domain, we divide the task function into two compo-
nents: feature extraction (backbone) and detection (head),
such that f(X,β) = (fD ◦ fF )(X,βD, βF ) where fD, fF

are task functions for detection and feature extraction, and
βD, βF are parameters for detection and feature extraction,
respectively. The analogous minimizer for βF

t and βD
t is:

argmin{βD
t ,βF

t } =
∑
Xt

L
[(

fD
t ◦ fF

t

)(
Xt, β

D
t , βF

t

)
, Yt

]
(4)

Since features in the source domain are more generalized
and sufficiently cover our target domain, we assume that the
feature space in the source domain and target domain are
similar. However, our target labels are different (Ys ̸= Yt)
since we retrain the models with in-lab objects (cone, cube,
and sphere). Here we utilize two transfer learning strategies:
(1) instance transfer, where the marginal distribution of
source features is different from that of target features, and
(2) feature representation transfer, where we fit the source
feature domain into the target feature domain.

B. Robot Transformation
The robot is made of multiple rigid frames, and two

neighbor frames are connected by a joint. We can identify the
relative pose between two frames by rotation and transition
matrices. To determine a frame pose referenced to the base
frame, we use the chain of transformations as follows:

T0,n =

n−1∏
j=0

Tj,j+1 = T0,1 · T1,2 · ... · Tn−1,n (5)

where T0,n is the transformation between the base frame and
the target frame and Ti,i+1 is the transformation between the
reference frame i and the neighboring target frame i+ 1.

Each transformation contains rotation and transformation
information with respect to the reference frame. In ROS,
links between frames are represented in a tree structure,
which allows us to easily find the chain of transformations
between any two frames by finding a path between two
frames within the tree. This implies that we can calculate
the pose of the target frame with the known reference’s
pose. We calculate the hand’s pose with reference to the
base when generating the 3D ground truth point, as shown
in Fig. 3, as wh = Tb,h ·wb, where wh and wb are the world
coordinates of the hand and the base, respectively, and Tb,h

is the transformation between the base and the robot hand.



C. Homogeneous Points Avoidance

Multiple points on a single ray in space can represent the
same pixel on the image plane. To avoid collecting the same
point representing the same pixel at multiple depths, we re-
validate each acquired Euclidean coordinate by using point
and line representations in homogeneous coordinates [28]:

l = o ∧ p : l = O × P (6)

where l, o, and p represent a line, the origin coordinates, and
an arbitrary point in homogeneous coordinates, respectively,
and l, O, and P represent a line, the origin coordinates, and
an arbitrary point in the Euclidean coordinate system.

We check if the new point P ′ lies on line l as follows:
p′ ∩ l : P ′ · l = 0 (7)

If the dot product results in 0, we discard the new point P ′;
otherwise, we include P ′ into our calibration procedure.

D. Data Acquisition Synchronization

Since the robot allows various kinds of sensors to acquire
reliable data for perception and navigation tasks, using a
single computer would cause less expandability for new
sensors and become the bottleneck for tasks that require
extensive computing power, such as arm motion planning,
navigation, and vision-based tasks. Therefore, we implement
our system using distributed computers, where each com-
puter performs a specific task and is synchronized by ROS
messages. Specifically, we use one computer to control two
robot arms. This computer specializes in low-level motion
planning from commands, transforming the end-effector and
camera to obtain 3D coordinates and broadcasting them into
the ROS network. The second computer detects the target
object, gets the bounding box center’s image coordinates,
calculates the detected object’s estimated depth on an input
RGB-D image, and broadcasts them to the ROS network.
Note that 3D and 2D point coordinates are broadcasted from
the two computers at different rates due to their different
computing power. Meanwhile, the third computer sequen-
tially sends each calibration point to the first computer and
listens to 3D world coordinates and 2D image coordinates
from the two other computers. As the arm motion stops,
the time synchronization takes place at Tsync = tmotion +
min {| tmotion − T3d |, | tmotion − T2d |} and we sample 3D
world and 2D image coordinates. Since motion planning and
detection tasks require intensive computing power, no other
tasks can interrupt them during their operation. By ensuring
this, this design firmly guarantees the real-time performance
of the entire robot system, as illustrated in Alg. 1.

E. Extrinsic Camera & Scale Factor Calibration
1) Extrinsic Camera Calibration: To recover the extrinsic

matrix from a set of n pairs of 3D points in world coordinates
and 2D points in image coordinates, we obtain the Uncali-
brated Perspective-n-Point (UPnP) method [29]. The goal of
UPnP is to minimize the reprojection error as follows:

minimize
fx,fy,[R|t]

∑
i

∣∣∣∣[ui, vi]
T − g

(
[xi, yi, zi]

T
)∣∣∣∣2

where [ui, vi] represents point coordinates on the im-
age plane and g(·) is the function projecting 3D points,

Algorithm 1: Sample data with time synchronization
Input : P :=

[
pw
1 , pw

2 , ..., pw
n−1, pw

n

]
Output: S := [(pw

1 , uc
1), (pw

2 , uc
2), ..., (pw

n , uc
n)]

1 function sample data(P)
2 S = [ ]
3 for p ∈ P do
4 send move command(p)
5 p=listen 3D coordinate(blocking=False)
6 u=listen 2D coordinate(blocking=False)
7 wait motion finish(blocking=True)
8 calculate synchronized time()
9 S.add 3D 2D points pair(p,u)

10 return S

[xi, yi, zi]
T , in world coordinates to image coordinates. Note

that we obtained (fx, fy) from our depth camera (Sec. III-A).
In our proposed calibration method, the number of col-

lected points, n, in each plane varies since the width of the
captured region gets narrower as the robot arm moves toward
itself and vice versa. Furthermore, to uniquely define and
make it easy to estimate, we express each of the 3D points
in world coordinates in terms of a weighted sum of control
points in barycentric coordinates as pw

i =
∑4

j=1 αijcwj ,
where pw

i is a 3D point in world coordinates, cwj represent
coordinates of four control points in world coordinates, and
αij are homogeneous barycentric coordinates of the ith 3D
point, calculated from that 3D point position with respect
to the four control points in world coordinates under the
normalization condition that

∑n
j=1 aij = 1.

Since barycentric coordinate properties pertain to camera
coordinates, we can also convert 3D points in camera coor-
dinates to a weighted sum of control points similar to pw

i :

pc
i =

4∑
j=1

αijccj =

4∑
j=1

αij

[
xc
j , y

c
j , z

c
j

]T (8)

where pc
i is a 3D point in camera coordinates and ccj repre-

sent coordinates of four control points in camera coordinates.
Substituting Eq. 8 into the inverse of Eq. 1, we obtain:

s

ui

vi
1

 =

fx 0 cx
0 fy cy
0 0 1

 [
R
[
Xw Yw Zw

]
+ t

]
=

=

fx 0 cx
0 fy cy
0 0 1

 pc
i =

fx 0 cx
0 fy cy
0 0 1

 4∑
j=1

αij

xc
j

yc
j

zcj

 (9)

Leveraging the fact that s =
∑4

j=1 αijz
c
j from the third

row of Eq. 9, we substitute s =
∑4

j=1 αijz
c
j into the two

other rows of Eq. 9 and get two corresponding equations:{∑4
j=1 αijx

c
j + αij(cx − ui) · (zcj/fx) = 0∑4

j=1 αijy
c
j + αij(cy − vi) · (zcj/fy) = 0

(10)

Thus, each 3D point produces two corresponding equa-
tions in terms of homogeneous barycentric coordinates,
the center coordinates on the image plane, the control
points in barycentric coordinates, and the focal length. We
thus need to solve 2n equations that are derived from n
pairs of 3D-2D points along with 12 unknown coordinates,[
xc
j , y

c
j , z

c
j

]
j=1,2,3,4

, of four control points in the camera
coordinates. We express 2n equations in matrix form as
Mx = 0, where M is a 2n×12 matrix containing coefficients
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αij and the coordinates of points, [ui, vi]
T , on the image

plane. Here, x is obtained using the Exhaustive Linearization
and Relinearization method, as described in [29].

2) Scale Factor Calibration: Since the scale factor, s, acts
as an intermediate value, it is no longer determined in the
calibration process, as described in [30]. In our work, to
calibrate the scale factor at each 3D reference plane, we find
the scale factor as described in the following equation:

argmin
s

N∑
i=1


Xw,i

Yw,i

Zw,i

1

− s ·

fx 0 cx
0 fy cy
0 0 1

−1 [
R|t

]−1

ui

vi
1



2

(11)

As illustrated in Fig. 2, we calibrate the scale factors,
s1 and s2, at the closest reachable depth and the farthest
reachable depth, respectively. Here we leverage the projective
geometry property to establish the relationship between scale
factors of depths that lie in the range of the closest reachable
depth and the farthest reachable depth, as specified in Eq. 2.

F. Summary of Calibration Procedure

Our proposed calibration method is summarized as below:
1) Move the object to different known positions on the

first plane at depth, d1, and detect the object locations
on the image plane using the 2D detector.

2) Estimate the camera extrinsic matrix, [R|t], based on
the set of 3D-2D point pairs resulting from Alg. 1, as
described in Sec. IV-E.1.

3) Estimate the first scale factor, s1, for the first plane at
the first depth, d1, using Eq. 11.

4) Repeat Step 1 at depth d2 to obtain the set of 3D-2D
point pairs, and then estimate the second scale factor,
s2, based on the obtained extrinsic matrix [R|t] in Step
2 and the newly-obtained set of 3D-2D point pairs.

5) Estimate the scale factor based on the estimated depth:
s = b0 + b1 · d.

V. EXPERIMENTAL RESULTS & EVALUATION

A. Experimental Setup

We first mount the Intel RealSense D435i depth camera
on the display of the Baxter robot (Fig. 3). Then, we let the
robot hold one of the objects (cone, cube, and sphere) in
its hand. As a set of 3D points on a plane at a distance of
d1 from the robot is generated, the robot executes the set
of 3D points following Alg. 1. Specifically, after the robot
executes a position command, the feedback position is read

as 3D point ground truth to address that the feedback position
may differ slightly from the position command due to the
hardware imperfection. At the same time, we use YOLOv8 to
detect the bounding box of the object and calculate the center
coordinates of the bounding box on the image plane (Fig.
4a). We repeat the process iteratively for n 3D points and
use them to estimate the extrinsic matrix (Sec. IV-E.1) and
the scale factor s1 (Sec. IV-E.2). The process is repeated on
the second plane at a depth of d2 (Sec. IV-C), thus obtaining
the second scale factor, s2. For calibration testing, we repeat
the process on multiple planes that are lying in the robot
workspace. In verifying the correctness of our calibration
method, we task the Baxter robot with picking the object
and putting it into the destination box (Fig. 4b).
B. Evaluation Metrics

To evaluate how well the model detects, we compute av-
erage precision (AP) for each object class and mean average
precision (mAP) for all classes at multiple intersections over
union (IoU) thresholds and compare the precision among
three transfer learning strategies. For the calibration preci-
sion, we calculate the error along each axis and the Euclidean
distance between ground truth points and estimated points.

1) Object Detection: : We train the YOLOv8-tiny model
on the NVIDIA GTX 4090 (24 GB) GPU with three
strategies mentioned in Sec. IV-A with 1000 epochs for
each strategy. The trained model starts to converge at the
150th epoch and finally converges at the 700th epoch, taking
approximately 43 minutes. To assess how well the transfer
learning strategies are during the training stage, we calculate
AP and mAP based on IOU thresholds based on the ground
truth bounding box and the proposal bounding box. The IoU
thresholds range from 0.01 to 1.00 with a step of 0.01. After
evaluating detection proposals on all IoU thresholds, we cal-
culate the mAP for each model. The results of AP and mAP
on IoU thresholds from 0.80 to 1.00 are shown in Fig. 5.
Overall, two transfer learning strategies outperform training
from scratch, which means the source domain knowledge is
useful in target tasks. The feature extraction strategy gives
similar results to the fine-tuning strategy, which implies that
the features in the source domain cover most of the features
in the target domain. Lastly, the feature extraction strategy
outperforms the fine-tuning strategy in detecting the sphere.

2) Calibration Error: After calibrating the scale factor
based on the estimated depth from the depth camera, we
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Fig. 6: Results of our proposed calibration method at depths of 0.57, 0.62, 0.67, 0.72, and 0.77 meters.

make multiple predictions for the world coordinates of each
detected object position on the image plane. We compare
them with ground truth positions obtained from the robot
transformation (Sec. IV-B). Here, we calculate the displace-
ment errors along the x-axis, y-axis, and z-axis in world
coordinates and the Euclidean distance error between the
ground truth positions and the predicted positions. The cali-
bration error results are presented in Table I. For the x-axis,
the maximum error occurs at a distance of 0.77 m, and the
minimum error at 0.57 m. For the y-axis, the maximum error
is at 0.77 m, and the minimum error at 0.72 m. For the z-
axis, the maximum error is at 0.62 m, and the minimum error
at 0.77 m. For the Euclidean distance error, the maximum
error occurs at 0.77 m, and the minimum error occurs at 0.72
m. Fig. 6 shows the resulting 3D points are reconstructed
from 2D points, and no systematic error is found as each
sample position is independent of the other. Since our robot
moves the object in 3D and holds it in the air, small
vibrations are inevitable, while other static systems, such as
turntables or coordinate-milling machines, do not encounter
such issues. However, our method induces Euclidean distance
errors ranging from 3.9 mm to 6.5 mm on multiple plans
within the robot’s workspace, which outperforms the average
error of 6.6 mm with the variance of 6.0 mm on a pre-defined
plane reported from a recently-proposed method [6].

C. Demonstration

The demonstration video includes three parts: (1) the robot
performing multiplanar self-calibration using YOLOv8 as a
2D detector and depth estimation simultaneously, (2) the
robot testing 3D estimation using an RGB-D image from the

Depth Mean Error Avg Error (x) Avg Error (y) Avg Error (z)
0.57 m 0.0039 0.0026 0.0022 0.0007
0.62 m 0.0030 0.0014 0.0020 0.0008
0.67 m 0.0032 0.0019 0.0018 0.0007
0.72 m 0.0028 0.0019 0.0015 0.0005
0.77 m 0.0065 0.0047 0.0033 0.0004

TABLE I: Calibration errors, including mean Euclidean distance
error, average error on the x-axis, y-axis, and z-axis, calculated in
meters at depths of 0.57, 0.62, 0.67, 0.72, and 0.77 meters.

Intel RealSense D435i depth camera, and (3) the robot pick-
ing a detected target object (sphere) and then placing it in the
destination box: https://youtu.be/KrDJ22rvOAo.

VI. CONCLUSION & FUTURE WORKS

This work proposes a novel multiplanar self-calibration
method for mobile cobots utilizing a 2D object detector
with depth estimation from RGB-D images acquired from
the Intel RealSense D435i depth camera. The robot self-
calibrates using its end-effector as ground truth for the cam-
era’s position and orientation. Meanwhile, the 2D detector
allows the robot to identify the object’s proposal prediction
bounding box, locate the center coordinates of the bounding
box, and estimate the depth of the detected object. Through
this, the robot calculates the transformation from the image
coordinates and the depth of the object in world coordinates.
We tested our proposed self-calibration method on a two
7-DOF arm Baxter robot. After calibrating and calculating
the world coordinates of the detected-target object, the robot
is able to perform pick-and-place tasks in 3D precisely and
efficiently. We reserve the object manipulation task based on
3D object segmentation, classification, and detection after
calibrating the robot’s camera for future work.

https://youtu.be/KrDJ22rvOAo
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