
Online 3D Deformable Object Classification for
Mobile Cobot Manipulation

Khang Nguyen Tuan Dang Manfred Huber

Abstract—Vision-based object manipulation in assistive mobile
cobots essentially relies on classifying the target objects based on
their 3D shapes and features, whether they are deformed or not.
In this work, we present an auto-generated dataset of deformed
objects specific for assistive mobile cobot manipulation using an
intuitive Laplacian-based mesh deformation procedure. We first
determine the graspable region of the robot hand on the given ob-
ject’s mesh. Then, we uniformly sample handle points within the
graspable region and perform deformation with multiple handle
points based on the robot gripper configuration. In each defor-
mation, we identify the orientation of handle points and prevent
self-intersection to guarantee the object’s physical meaning when
multiple handle points are simultaneously applied to the mesh at
different deformation intensities. We also introduce a lightweight
neural network for 3D deformable object classification. Finally,
we test our generated dataset on the Baxter robot with two 7-DOF
arms, an integrated RGB-D camera, and a 3D deformable object
classifier. The result shows that the robot is able to classify real-
world deformed objects from point clouds captured at multiple
views by the RGB-D camera. The source code is available at
https://github.com/mkhangg/deformable cobot.

Index Terms—3D vision, deformable object manipulation

I. INTRODUCTION

Manipulating everyday objects based on three-dimensional
(3D) visual information is crucial for assistive robot applica-
tions but enormously depends on the 3D shapes of the objects.
Everyday objects include a wide range of things made from
various materials with different levels of softness and usually
have simple topological forms. However, manipulating these
objects, especially deformable objects (e.g., soda cans, toy
balls, and disposal cups), with different levels of forces at
each time results in different deformed shapes, challenging
the robotic vision to re-classify deformed objects efficiently
in later manipulation. Indeed, robots might eventually lose
the features of the target objects and can no longer detect
those objects in deformed shapes. For this reason, an auto-
generated dataset of deformable everyday objects by intro-
ducing an intuitive mesh deformation procedure is essential to
facilitate robust, vision-based deformable object manipulation
for assistive robotics development.

Significant effort has been spent in previously on generating
datasets of 3D deformable objects, but focused primarily
on humanoid shapes embedded with human skeleton models
[1]–[3]. These humanoid shapes are helpful in unmanned
vehicle system applications regarding classifying and detecting
pedestrians. However, they are inapplicable for deformable
object manipulation as assistive mobile cobots are highly likely

All authors are with the Learning and Adaptive Robotics Laboratory,
Department of Computer Science and Engineering, University of Texas at Ar-
lington, Arlington, TX 76013, USA. (emails: khang.nguyen8@mavs.uta.edu,
tuan.dang@uta.edu, huber@cse.uta.edu)

Deformed Object on
Robot Gripper in 3D Space

3D Object Classification3

Train 3D Classifier with
Deformed Objects

1 Multiview Registration2

Fig. 1: Overview of online 3D deformable object classification for
assistive mobile cobots with an integrated RGB-D camera.

to deal with everyday objects, such as cans, balls, and cups
made from homogeneous materials like tin, foam, and paper.

Recent works in deformable object manipulation mainly
focus on folding towels and clothes [4]–[6] or ropes [7] of
various materials. However, a weakness of these techniques
is assuming that robots have prior knowledge of the target-
deformed object. Thus, these techniques only enable robots to
deal with garment-like objects and preclude themselves from
learning diverse deformed shapes of everyday objects.

To fill this gap in deformable object manipulation, we pro-
pose an auto-generated dataset of deformable everyday objects
using an intuitive mesh deformation procedure. Our dataset
includes tin cans, foam balls, and paper cups of various sizes
in undeformed and deformed shapes. To generate deformed
objects, we identify the graspable region of the robot gripper
on the object, uniformly sample the handle points within the
graspable region, and deform the object’s mesh with different
deformation intensities. Using this data, the mobile cobot can
learn to re-recognize everyday objects in both undeformed and
deformed shapes after manipulating them (Fig. 1).

To generate such a dataset, we have to ensure that the gener-
ated deformed objects have physical meaning by overcoming
the following challenges: (1) sampling a set of handle points
that could physically express grasp poses, (2) identifying the
orientation of handle points, (3) preventing self-intersection
when multiple handle points are simultaneously applied at
multiple levels of deformation intensities, and (4) teach the
robot to recognize those deformed objects efficiently.

In this work, we make the following contributions: (1)
presenting a deformation procedure to auto-generate a dataset
of deformable everyday objects, (2) verifying our dataset
with convolutional neural network (CNN) classifiers with a
spatial transformer network for 3D objects, and (3) performing
experiments on the Baxter robot with two 7-DOF arms and an
Intel RealSense D435i RGB-D camera with real-world objects.

https://github.com/mkhangg/deformable_cobot
mailto:khang.nguyen8@mavs.uta.edu
mailto:tuan.dang@uta.edu
mailto:huber@cse.uta.edu

Intel® RS D435i
RGB-D Camera

Left-Hand
Fingers

Right-Hand
Fingers

Hardware

Intel® NCS2

Right Arm

Left Arm

Sw
it

ch

OS MiddlewareBaxter Robot Grasping
A Deformable Object

3
D

 D
ef

o
rm

ab
le

 O
b

je
ct

 C
la

ss
if

ie
r

ONNX ModelPC 1

PC 2

PC 3

OS
&

Drivers

OpenVINO

ROS
Arm Motion

Planning

U
SB

/E
th

e
rn

e
t

In
te

rf
ac

e

D
a

ta
/C

o
n

tr
o

l F
lo

w

B
a

xt
e

r
s

Sy
st

e
m

 O
ve

rv
ie

w
Fig. 2: The robot system includes a hardware layer, an OS layer, a middleware layer, and a 3D deformable object classifier.

II. RELATED WORK

3D Mesh Deformation: Mesh deformation and editing
techniques in 3D have been a well-researched area in computer
graphics, including fitting to Laplacian coordinates [8]–[10],
computing Laplacian energy [11], and optimizing Dirichlet
surface energy [1]. These traditional shape deformation frame-
works well-handle detail-preserving standards when a smooth
large-scale deformation is applied to the original shapes, which
matches users’ intuition and expectation of shape deformation.
Recent incremental development in deep learning (DL) also
introduces networks that serve object deformation purposes
which output either a target-deformed mesh or point cloud.
As a matter of fact, these DL techniques conceptually differ
from the traditional mesh deformation techniques as they
require an RGB image of a deformed target object [12]–[14],
a common intermediate template representation [15], or user-
defined high-level deformation intentions [16] as an additional
input along with the given point cloud to deform the original
objects as desired. Nevertheless, these DL techniques are not
well-suited for generating a dataset of everyday objects that are
deformed by robot manipulation as it is impossible to capture
all possibilities of deformations with RGB images, as well
as to find the common template representation for all objects
with different shapes, and it is generally ambiguous to define
user-defined high-level deformation intentions.

In the context of robotic applications, especially robot
manipulation, both traditional and DL deformation techniques
lack the intuition of (i) where handle points for deformation are
to efficiently cover all possibilities, (ii) how much deformation
intensity should be applied to the surface, (iii) which direction
with respect to the object’s centroid should the deformation be
applied in, and (iv) how to ensure the physical meaning of de-
formed objects (e.g., preventing self-intersection on deformed
meshes when multiple handle points are applied). In this work,
we present an intuitive technique followed by the traditional
Laplacian-based mesh deformation [8] that can sufficiently
address the above-mentioned intuition of robot manipulation
based on the robot gripper configurations.

3D Object Classification: To classify objects in the form
of point clouds, hand-crafted feature engineering, and DL-
based feature extractions are common methods to represent
point clouds in feature space. Hand-crafted feature engineering

can work with some simple objects but fails to generalize
objects’ representations. Furthermore, traditional CNNs can
not be applied directly to point clouds as with images be-
cause of their irregular structures. To enable point clouds to
work with CNNs, we need to convert the point cloud into
ordered structure data, a so-called feature representation. The
projection-based methods [17], [18] project multiple views of
a point cloud into multiple images so we can directly apply
CNNs on top of these images. Alternative to the projection-
based method, researchers exploit the voxel-based method
[19], [20] to organize a point cloud into 3D grids of voxels.
By voxelizing a point cloud, we can apply 3D CNNs to extract
its features. In this work, we use a point-based method [21],
[22] to extract features from a point cloud, directly processing
point clouds as input and avoiding extra computation like in
projection-based and voxel-based methods.

System Architecture: As our end goal is to build a robotic
system that is able to efficiently recognize objects in 3D space,
we first organize software components, then connect them to
hardware components, and synchronize between them, which
is the first step to localizing objects in a rich representation.
Organizing software components in a constrained environment
is challenging since the robot system has to enable multi-
ple sensor modalities, actuators, and communication stacks
simultaneously. To maintain system reliability, we design our
software architecture under modularization, layerization [23]–
[25], and high synchronization requirements [26].

III. OVERVIEW OF ROBOT SYSTEM

We customize the Baxter robot to fit our application, as illus-
trated in Fig. 2. The Baxter robot was originally equipped with
one computer controlling two 7-DOF arms. We then add two
grippers, controlled by another computer. An Intel RealSense
D435i RGB-D camera is attached to the third computer to
reconstruct 3D scenes. These three computers are connected
to an Ethernet switch and exchange messages through Robot
Operating System (ROS) messages. Note that ROS messages
are built on top of TCP/IP supported by the native OS: Ubuntu
20.04 and ROS Noetic. To reduce the system’s complexity,
we employ an onboard Intel Graphic Processor Unit (GPU)
to execute our deformable object classifier while the training
stage of the classifier takes place on another computer with

(a) 3D scanning
real-world object

(b) Downsampling
point cloud

(c) Identifying
graspable region

(d) Uniform sampling
handle points

(e) Slicing
point cloud

(f) Deforming based
on handle points

(g) Generating
deformed mesh

Fig. 3: The deformation procedure includes (a) 3D scanning real-world objects, (b) voxel downsampling scanned point clouds, (c) identifying
the graspable region of the robot on point clouds, (d) uniform sampling handle points, (e) slicing point clouds, (f) performing deformation
on handle points based on robot gripper’s configuration, and (g) generating deformed meshes.

a dedicated NVIDIA GPU. To run the classifier on the Intel
GPU, we use the native library developed by Intel, OpenVINO,
to implement our software. The model resulting from the
training process is then converted into an ONNX model and
eventually loaded on a native GPU. When the application layer
takes a multiview of RGB-D images, it reconstructs the 3D
view, and converts the view into a point cloud. Herein, the
application layer sends the point cloud to the native GPU,
where the loaded classifier is ready to classify the point cloud.
We train the classifier on our server and convert it into ONNX
format so that we run it on the existing robot hardware, such as
the onboard Intel GPU, using the OpenVINO library. Further
details in training and testing the classifier are discussed in
Sec. V, and the deployment stage on the robot system with
real-world objects is evaluated in Sec. VI-C.

IV. 3D DEFORMABLE OBJECT GENERATION

In this section, we denote a given mesh with n vertices
as M := (E, V, F), where E, V , and F are sets of edges,
vertices, and faces in M, respectively, and denote a given
point cloud with n points as P := {pi}, for i = 1, 2, ..., n,
where pi = [xi, yi, zi]

T represent points in P in Cartesian
coordinates. The set of vertices V in M contains {vi}, similar
to the set of points {pi} in P , for i = 1, 2, ..., n. Likewise,
we denote the deformed mesh as M′

:= (E
′
, V

′
, F

′
).

A. Smooth-Regularization ARAP Deformation

Let vi ∈ V denote the original vertices in a mesh M,
and v

′

i ∈ V ′ denote the transformed vertices on the deformed
mesh M′

. Without loss of generality, in the set of transformed
vertices V ′, we arrange vertices v

′

i as follows:{
v

′

i = ci = vi, for i = 1, 2, ...,m

v
′

i = Ti(vi) , for i = m+ 1,m+ 2, ..., n
(1)

where Ti(·) represents the transformation from the original
vertex vi to the transformed vertex v

′

i, ci denotes a constraint
point in M′

that is invariant to vertex vi in M, and m < n
with m being the number of invariant vertices, ci, and n being
the total number of vertices, vi.

The difference between one vertex with respect to its
neighbors is approximated by the differential (Laplacian or
δ) of Cartesian coordinates [27] as follows:

δ(vi) =
1

|Ωi|
∑

j∈N (vi)

(cotαij + cotβij)

2
(vi − vj) (2)

Fig. 4: Real-world objects (tin cans, foam balls, and paper cups) of
various sizes (left) and the MakerBot Digitizer 3D scanner (right).

where δ(vi) represents the δ-coordinates of vertex vi, vj
represent a one-ring neighboring vextex of vertex vi, |Ωi| is
the area of the Voronoi cell of vi, N (vi) is the set of points that
are one-ring neighbours of vi, and αij , βij are two opposite
angles of the edge connecting vi and vj .

We deform the mesh M by using the smooth-regularization
As-Rigid-As-Possible (ARAP) deformation. Using Eq. 1 and
Eq. 2, the deformation technique is formalized as follows:

E(V
′
) =

n∑
i=1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

1

|Ωi|
∑

j∈N (v′i)

ωcot

(
v
′
i − v

′
j

)
−R(v

′
i) · δ(vi)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

2

+

n∑
i=m+1

∣∣∣∣∣∣v′
i − ci

∣∣∣∣∣∣2
2

+

n∑
i=1

∑
j∈N (v′i)

αsmooth · S(M)
∣∣∣∣∣∣R(v

′
i)−R(v

′
j)
∣∣∣∣∣∣2

2
,

(3)

with δ(vi) =
1

|V |

|V |∑
i=1

1

|Ωi|
∑

j∈N (vi)

ωcot(vi − vj)

and ωcot = (cotαij + cotβij)/2

where E(V ′
) represents the error function for the set of

transformed vertices V
′

in M′
, R(v

′

i) represents the rotation
matrix for vertex v

′

i, αsmooth is the regularization for surface
smoothness, and S(M) denotes the surface area of M.

We also use the average of cotangents of two adjacent angles
as weights for its compensation for non-uniform shapes [28]
and its better geometric representation in terms of the query
vertex, one-ring neighboring vertices, and adjacency angles.

Fig. 5: Demonstration of a subset of our auto-generated 3D deformable object dataset.

B. 3D Deformable Object Generation

The deformation procedure is shown in Fig. 3, from scan-
ning real-world objects to generating deformed meshes.

1) 3D Scanning Real-World Objects: We use the MakerBot
Digitizer 3D scanner to scan real-world objects (Fig. 4) as the
scanner handles the point cloud registration procedure when
performing multiple scans. Our raw scans include various-
sized tin cans, foam balls, and paper cups.

2) Downsampling Point Clouds: Raw point clouds given by
the 3D scanner contain approximately 50,000 points each. We
voxelize to downsample the point cloud and reconstruct the
mesh from the downsampled point cloud using the Poisson
surface reconstruction method [29] with the maximum tree
depth of 9. The number of points in downsampled point clouds
is about 10,000 points each (Fig. 3b), and each downsampled
point cloud is less than 1 MB. In fact, this step is necessary to
save computational time in later steps as the number of points
has reduced sufficiently but still maintains the object’s details.

3) Identifying Graspable Region: To identify the graspable
region on the raw scan of the objects, we prioritize the
graspable region along the long side of the objects based on the
intuition of grasp poses [30], [31]. An example of identifying
the graspable region of a tin can is illustrated in Fig. 3c.

4) Sampling Handle Points: Instead of brute-forcing all
points in the graspable region to be handle points, we uni-
formly sample them from the points in the graspable region.
By doing so, we can also represent all possibilities of grasping
poses using a uniformly distributed subset. An example of
sampling handle points of a tin can is shown in Fig. 3d.

5) Handle Points for Multiple Deformations: The robot’s
hand is usually in the form of a gripper; we identify at least
two grasping points (or handle points) for the grasp pose in
each deformation. As illustrated in Fig. 3e, for each point in
the sampling of handle points in the previous step, we slice
the object into slices with the thickness of 1 and take the point
that has the farthest Euclidean distance to the sampled point
as the second point for the grasp pose.

6) Orientation of Handle Points: Note that Eq. 1 reveals the
fact that the transformation for one vertex, Ti(vi), could be an

arbitrary transformation, which does not guarantee the physical
meaning of the deformed object under grasping conditions.
Thus, we define our transformation as T−ni

(vi), where T−ni
(·)

denotes the transformation that is in the opposite direction of
the normal vector, ni, of the vertex, vi, as shown in Fig. 3f.

7) Intensities of Deformation: To perform deformation with
different intensities, we define the intensity at vi, Ii, as:

Ii = ||T−ni(vi)− vi|| (4)

where ||·|| represents the vector’s magnitude. If Ii exceeds the
calculated maximum intensity, Imax

i , at that configuration, Ii is
set to Imax

i , preventing self-intersection on deformed meshes.
8) Generating Deformed Meshes: We use Eq. 3 and Eq.

4 to perform the deformation of multiple handle points with
appropriate orientations and deformation intensities as dis-
cussed in the previous steps. An example of the deformed can
is shown in Fig. 3g. The deformation procedure is applied
to each 3D scan of real-world objects in Fig. 4, and our
dataset is generated on an Intel Core i7-12700K CPU, taking
approximately 23 to 28 minutes for each class. Each class
contains roughly 1,600 to 2,000 deformed meshes. A subset
of our 3D deformable object dataset is shown in Fig. 5.

V. 3D DEFORMABLE OBJECT CLASSIFICATION

To classify an everyday object efficiently in terms of
runtime, whether in original or deformed shapes, on the
Baxter robot, we design a 3D deformable object classifier as
illustrated in Fig. 6. The deformable object classifier takes
either the full view of the object (in the testing stage) or the
partial view of the object (in the deployment stage) and decides
which class the object belongs to.

The input layer takes the input size of N×3 or N×6, where
N is the number of sampling points from the downsampled
point cloud of n points (n ≫ N). Note that the input size
depends on whether the input contains normal vectors or not.
The model then passes the input to the spatial transformer
network [32] to embed spatial information that is invariant to
permutations, rotations, and translations in point clouds. Then,
the spatial features are multiplied with the point coordinates
N × 3 and re-appended to the normal vector coordinates if

N
 x

 F

N
 x

 9

3
 x

 3

X

+

N
 x

 F
/2

c1

c2

ck

...

...

h1

h2

hf

hj

N
 x

 F

Convolutional LayersSpatial Transformer Dense OutputInputSampling Points

Deformation
Artifact N x 3 or None

N x 3N
 x

 6
 o

r
N

 x
 3

medium-can?

large-cup?

medium-ball?

 ?

Results

N
 x

 6
 o

r
N

 x
 3

Fig. 6: The 3D deformable object classifier takes uniformly sampling points of a point cloud with deformation artifacts as input and returns
probabilities of all classes at the output layer. Hidden layers include a spatial transformer, two convolutional layers, and one fully-connected
layer, with

⊗
and

⊕
indicating matrix multiplication operation and appending operation on batches, respectively.

4 6 8 10 12 14 16 18 20 22

Deformation Loss

0

50

100

150

200

250

300

C
o

u
n

t

intensity = 4

intensity = 6

intensity = 8

intensity = 10

intensity = 12

intensity = 14

Fig. 7: Distribution of deformation loss of the generated dataset at
deformation intensities of 4, 6, 8, 10, 12, and 14, respectively.

needed. Next, two convolutional layers are applied to the
input embedded with spatial feature information to extract F
features for each input, which results in the size of N × F .
Then the feature maps are flattened to a fully-connected layer,
and the classes’ probabilities are returned at the output layer.

The idea behind using spatial transformers for 3D object
classification is to find the different representation that is
invariant to permutations, rotations, and translations in point
clouds. Afterward, we can apply conventional CNNs on top of
these representations to perform the classification task. There-
fore, finding the features that represent for aforementioned
constraints is the crucial step to classifying a 3D object-
based point cloud. To implement this representation, we first
transform 3D space information from each point to higher-
dimension feature spaces. Next, we select the most represen-
tative features among N sample points for each feature in the
new feature space. These features represent spatial relation-
ships between points, the so-called spatial feature transformer.
Since we extract these features using symmetric functions such
as maxpool(), we maintain the invariance on the unordered
pointset of the point cloud. We then project N points into
this feature transform to get a new representation, which is an
ordered representation, so that further CNNs or MLP can be
applied to classify 3D objects in the form of point clouds.

We evaluate different combinations of numbers of features,
F , and numbers of sampling points, N , to see which parame-
ters contribute to learning processing. Through testing different
combinations, we can select the most appropriate pair of
(N,F) for a specific application which depends on the objects’
complexity. The evaluation of the classifier’s performance with
different design choices is discussed in Sec. VI-B.

VI. EVALUATION & EXPERIMENTAL RESULTS

A. Deformation Loss for Auto-Generated Dataset

To validate the deformation of one object with respect to
the original mesh, we compute the total loss, L, as a weighted
sum of (1) Chamfer distance loss, (2) mesh edge loss, (3) mesh
normal loss, and (4) Laplacian smoothing loss, as described:

(5)L = wdist · Ldist + wedge · Ledge

+ wnormal · Lnormal + wsmooth · Lsmooth

where Ldist, Ledge, Lnormal, and Lsmooth are losses for
Chamfer distance, mesh edge, mesh normal, and Laplacian
smoothing, respectively, and wdist, wedge, wnormal, and
wsmooth are their corresponding weights.

1) Chamfer Distance Loss: To estimate the similarity be-
tween the original and the deformed objects in the form of
point clouds, we use the Chamfer distance, Ldist, between
two clouds, which is written as follows:

Ldist =
1

|P1|

 ∑
pi∈P1

min
pj∈P2

∣∣∣∣pi − pj

∣∣∣∣2
2


+

1

|P2|

 ∑
pj∈P2

min
pi∈P1

∣∣∣∣pj − pi

∣∣∣∣2
2


where P1 and P2 represent the two point clouds, respectively,
pi and pj are ith and jth points in P1 and P2, respectively,
and |Pi| indicates the number of points in the point cloud Pi.

2) Mesh Edge Loss: In deformed meshes, we intuitively
expect to preserve the object’s details; therefore, we compute
the mesh edge loss, Ledge, that penalizes long edges:

Ledge =
1

|E|

 |V |∑
i=1

∑
j∈N (vi)

(
||vi − vj ||22 − Ltarget

)2


where Ltarget is the target penalized length and |E| represents
the number of edges in the deformed mesh M′

.
3) Mesh Normal Loss: Due to the fact that the mesh is

deformed, each pair of adjacent surfaces are displaced differ-
ently. Thus, the mesh normal consistency computes the mesh
normal loss, Lnormal, across the mesh surface as follows:

Lnormal =
1

|F |

 |V |∑
i=1

∑
j∈N (vi)

(1− cos (ni,nj))



0 10 20 30 40 50
Epoch

0

0.2

0.4

0.6

0.8

1.0

L
o

s
s
 o

f
3
2

-F
e
a

tu
re

 M
o
d
e

l
A

c
c
.
o
f

3
2

-F
e
a

tu
re

 M
o
d
e

l
L
o

s
s
 o

f
4
8

-F
e
a

tu
re

 M
o
d
e

l
A

c
c
.
o
f

4
8

-F
e
a

tu
re

 M
o
d
e

l
L
o

ss
 o

f
6
4

-F
e
a

tu
re

 M
o
d
e

l
A

c
c
.
o
f

6
4

-F
e
a

tu
re

 M
o
d
e

l
L
o

s
s
 o

f
8
0

-F
e
a

tu
re

 M
o
d
e

l
A

c
c
.
o
f

8
0

-F
e
a

tu
re

 M
o
d
e

l

L
o
s
s
 /

 A
c
c
u
ra

c
y

 (a) Training performance of deformable object classifier with multiple feature choices

41.6

55.7

73.6

93.8

14.41

25.37

38.89

54.97

32 T
ra

in
a
b
le

 P
a
ra

m
s
 (

x
1
0
0

)

0

20

40

60

80

100

0

20

40

60

80

100

M
o
d
e
l
S

iz
e
 (

K
B

)

Number of Features
 (b) Model sizes and number of trainable parameters

Model Size
Trainable Params

48 64 80

Fig. 8: (a) Training performance with accuracy and loss over the training stage of deformable object classifiers with 32, 48, 64, and 80
features, respectively, and their corresponding (b) model sizes (in kilobytes) and numbers of trainable parameters (in hundred).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0

0

0.0117

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.1438

0

0

0

0

0

0

0.1921

0

0

0

0

0

0

0

0

1

1

1

1

0.9883

0.8079

0.8562

1

0.0036

0

0

0.005

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.0909

0

0

0

0

0

0

0.0331

0

0

0

0

0

0

0

0

1

0.9964

1

1

0.995

0.9669

0.9091

1

0

0

0

0.0117

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.1438

0

0

0

0

0

0

0.1921

0

0

0

0

0

0

0

0

1

1

1

1

0.9883

0.8079

0.8562

1

0

0

0

0.005

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.0042

0

0

0

0

0

0

0.0517

0

0

0

0

0

0

0

0

1

1

1

1

0.995

0.9483

0.9958

1

0

0

0

0.0117

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.1438

0

0

0

0

0

0

0.1921

0

0

0

0

0

0

0

0

1

1

1

1

0.9883

0.8079

0.8562

1

medium-can

food-can

small-cup

medium-cup

large-cup

tiny-ball

small-ball

medium-ball

0.0146

0

0

0.005

0

0

0

0.0021

0.0036

0

0.0033

0

0

0

0

0

0.0055

0.0033

0

0

0

0

0

0.0018

0.0017

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.4736

0

0

0

0

0

0

0.2397

0.5264

0

0

0

0

0

0

0

0

0.9979

0.9854

0.9946

0.9945

0.9867

0.7603

1

Model Using

32 Features for 25 Samples

Model Using

48 Features for 38 Samples

Model Using

64 Features for 50 Samples

Model Using

80 Features for 62 Samples

Fig. 9: Confusion matrices of deformable object classifiers with 25, 38, 50, and 62 sample points, respectively.

where ni and nj denote normal vectors of two shared surfaces
of vi and vj , and |F | indicates the number of faces in M′

.
4) Laplacian Smoothing Loss: Deforming a given mesh

results in a different surface that can be evaluated using the
Laplacian smoothing loss, Lsmooth, for mesh in terms of
geometric-related entities to points on the mesh surface:

Lsmooth =
1

|V |

|V |∑
i=1

δ(vi)

The distribution of deformation loss, L, of the generated
dataset calculated using Eq. 5 well-presents and generalizes
deformations at multiple intensities, as shown in Fig. 7.

B. Performance of Classifier with Different Design Choices

1) Data Splitting: To verify the performance of our network
with different design choices of (N,F) on the deformable
objects dataset, we split our auto-generated dataset of 3D
deformable objects into training (70%) and test sets (30%).

2) Training Performance of Classification Network: We
train our 3D deformable object classifier on the NVIDIA GTX
4090 (24 GB) GPU with 70% of the generated dataset for 50
epochs for each of four different numbers of features: 32, 48,
64, and 80 features. The trained models start to converge at
the 10th epoch and finally converge at the 30th epoch. As
shown in Fig. 8a, the more features extracted from the input
point cloud, the more accurate the model obtained. With 80
features, the model achieves the highest accuracy of 93% with
the lowest loss of 19%. Meanwhile, the model with 32 features
obtains an accuracy of 80% with a loss of 41%. The model

with 48 features and 64 features obtains accuracies of 88%
and 91% and losses of 28% and 21%, respectively.

3) Model Sizes & Numbers of Trainable Parameters: As
we aim to deploy our classifiers on the Baxter robot for
fast interpretation on the native onboard Intel GPU with the
OpenVINO library, we limit the model sizes not to exceed 100
KB. The number of trainable parameters and model sizes at
each number of features are shown in Fig. 8b.

4) Testing Performance of Classification Network: We test
our trained classifiers with the remaining 30% of the generated
dataset and create the confusion matrices for each of them,
as shown in Fig. 9. The classifiers perform better as more
sampling points are used in models trained with more features.
The model with 32 features underperforms as it is highly
likely to confuse tiny and small balls with other classes, such
as large and small cups. The model with 48 features still
misclassifies between tiny balls and small balls and between
large cups and medium cans. The same results occur with the
model with 64 features, but this model has a lower likelihood
of misclassification. Lastly, the model using 80 features for
62 sampling points outperforms others; however, the failure
remains when it still confuses between tiny balls and small
balls, but with lower misclassification rates than other models.

C. Deployment on Baxter Robot

1) Experimental Setup: We first mount the Intel RealSense
D435i RGB-D camera on the display of the Baxter robot. We
then let the Baxter robot grasp one of the deformed objects
(cans, cups, and balls) in the dataset using its hand gripper
(Fig. 10a). The Baxter robot rotates its wrist to take point

RGB-D Camera

(a) Experimental setup (without rotation) (b) Rotating the wrist joint to multiple angles

Deformed
Object

First Rotation Second Rotation

(c) Classifying the object after two rotations

RGB-D Camera RGB-D Camera

Fig. 10: (a) Experimental setup for the Baxter robot grasping a deformed object (a deformed can), (b) rotating the wrist to take point clouds
at multiple views, and (c) multiview registration and classifying the deformed object using the 3D classifier operating on onboard Intel GPU.

 (a) Mutiple views of the

deformed can

 (b) Registration of the

deformed can

 (c) ROI of the registered

point cloud

Fig. 11: The deployment stage includes (a) capturing multiple views
of the object, (b) multiview point cloud registration, and (c) selecting
the region of interest of the registered point cloud.

clouds at multiple angles (Fig. 10b). Finally, the Baxter robot
classifies the object after taking the region of interest (ROI)
of the registration of multiview point clouds (Fig. 10c).

2) Capturing Point Cloud at Multiple Views: To take mul-
tiple views of the object, we first set the RGB-D camera
with minimum and maximum depth thresholds to focus on
the grasping object and to avoid capturing non-interested
background. Next, we rotate the wrist joint, W2, of the
robot’s arm by different angles. The process occurs on two
computers, including one controlling the robot’s arm and the
main computer, with synchronization between them. For each
angle, once the computer controlling the robot arm receives a
motion command from the main computer, it executes motion
planning and notifies the main computer when the motion
command is done. To this point, the main computer captures
a point cloud from the RGB-D camera and saves it into an
array. The process is repeated for other angles, resulting in an
array of point clouds captured at multiple views (Fig. 11a).

3) Mutiview Point Cloud Registration: After capturing mul-
tiview point clouds of the grasping object, we register them
using the point-to-point Iterative Closest Point (ICP) algorithm
[33] to reconstruct a partial view of the object (Fig. 11b).

4) Region of Interest of Registered Point Cloud: As the
registered point cloud may contain non-interested objects, we
select the ROI from the registered point cloud. To solve this,
we leverage the relative position of the wrist joint, W2, of the
robot’s arm to get rid of the lower part in the point cloud. The
ROI of the registered point cloud is shown in Fig. 11c.

5) Object Classification using OpenVINO: Since our goal
is to run our classifier without any dedicated NVIDIA GPUs,

we leverage the existing onboard Intel GPU using the Open-
VINO library. Herein, the ROI of the registered point cloud at
the previous step serves as the input of the classifier operating
on the onboard GPU of the Intel NUC5i7RYH PC.

6) Time Complexity on Conventional Hardware: The in-
ference time for the 3D classifier on the main computer
varies between 18 and 22 milliseconds (ms), depending on
the number of sampling points from the ROI of the registered
point cloud that the classifier takes in as input.

D. Demonstration

The demonstration video takes the scenario of the Baxter
robot (1) grasps a deformed soda can on its gripper, (2)
captures multiple views of the soda can by rotating its wrist
joint to multiple angles, (3) performs the pre-processing pro-
cedure (Sec. VI-C), and (4) recognizes the deformed object
by utilizing the 3D deformable object classifier running on
the onboard Intel GPU: https://youtu.be/qkgi3T6xYzI.

VII. LIMITATIONS & FUTURE WORKS

The main limitation of the current robotic system is that
the robot does not grasp deformed objects with sufficient
force. When the grasp does not guarantee force closure, the
object in the robot’s gripper may fall off its hand when the
robot is moving around for service tasks. Additionally, in the
scope of this work, the elasticities of the target objects are
not learned by the robot. Therefore, we reserve the tasks
of learning the elasticities of 3D deformable objects and
analyzing multifingered hand kinematics for future work.

VIII. CONCLUSIONS

This work presents hand-eye coordination for deformable
object manipulation on assistive mobile cobots by introducing
an auto-generated 3D deformable object dataset and a 3D
deformable object classifier. The dataset is generated from
scans of real-world objects taken from the MakerBot Digitizer
3D scanner using an intuitive Laplacian-based mesh defor-
mation procedure with smooth regularization. Meanwhile, the
classifiers are designed specifically for deformable object
classification and evaluated with different design choices. We
test our classifiers on the generated dataset on the Baxter robot
with two 7-DOF arms and a mounted Intel RealSense D435i
RGB-D camera with real-world objects. The result shows that
the robot can still recognize the deformable object on its hand.

https://youtu.be/qkgi3T6xYzI

REFERENCES

[1] R. Magnet, J. Ren, O. Sorkine-Hornung, and M. Ovsjanikov, “Smooth
non-rigid shape matching via effective dirichlet energy optimization,”
arXiv preprint arXiv:2210.02870, 2022.

[2] F. Bogo, J. Romero, M. Loper, and M. J. Black, “Faust: Dataset
and evaluation for 3d mesh registration,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2014, pp. 3794–
3801.

[3] A. M. Bronstein, M. M. Bronstein, and R. Kimmel, Numerical geometry
of non-rigid shapes. Springer Science & Business Media, 2008.

[4] C. Kampouris, I. Mariolis, G. Peleka, E. Skartados, A. Kargakos,
D. Triantafyllou, and S. Malassiotis, “Multi-sensorial and explorative
recognition of garments and their material properties in unconstrained
environment,” in 2016 IEEE international conference on robotics and
automation (ICRA). IEEE, 2016, pp. 1656–1663.

[5] D. Seita, N. Jamali, M. Laskey, A. K. Tanwani, R. Berenstein,
P. Baskaran, S. Iba, J. Canny, and K. Goldberg, “Deep transfer learning
of pick points on fabric for robot bed-making,” in Robotics Research:
The 19th International Symposium ISRR. Springer, 2022, pp. 275–290.

[6] A. Doumanoglou, J. Stria, G. Peleka, I. Mariolis, V. Petrik, A. Kargakos,
L. Wagner, V. Hlaváč, T.-K. Kim, and S. Malassiotis, “Folding clothes
autonomously: A complete pipeline,” IEEE Transactions on Robotics,
vol. 32, no. 6, pp. 1461–1478, 2016.

[7] M. Zuern, M. Wnuk, A. Schneider, A. Lechler, and A. Verl, “Local-
ization and tracking of deformable linear objects with self organizing
maps,” in ISR Europe 2022; 54th International Symposium on Robotics.
VDE, 2022, pp. 1–9.

[8] O. Sorkine and M. Alexa, “As-rigid-as-possible surface modeling,” in
Symposium on Geometry processing, vol. 4, 2007, pp. 109–116.

[9] O. Sorkine, D. Cohen-Or, Y. Lipman, M. Alexa, C. Rössl, and H.-
P. Seidel, “Laplacian surface editing,” in Proceedings of the 2004
Eurographics/ACM SIGGRAPH symposium on Geometry processing,
2004, pp. 175–184.

[10] O. Sorkine, “Laplacian mesh processing,” Eurographics (State of the Art
Reports), vol. 4, no. 4, 2005.

[11] A. Jacobson, I. Baran, J. Popovic, and O. Sorkine, “Bounded biharmonic
weights for real-time deformation.” ACM Trans. Graph., vol. 30, no. 4,
p. 78, 2011.

[12] A. Kurenkov, J. Ji, A. Garg, V. Mehta, J. Gwak, C. Choy, and
S. Savarese, “Deformnet: Free-form deformation network for 3d shape
reconstruction from a single image,” in 2018 IEEE Winter Conference
on Applications of Computer Vision (WACV). IEEE, 2018, pp. 858–866.

[13] D. Jack, J. K. Pontes, S. Sridharan, C. Fookes, S. Shirazi, F. Maire,
and A. Eriksson, “Learning free-form deformations for 3d object re-
construction,” in Computer Vision–ACCV 2018: 14th Asian Conference
on Computer Vision, Perth, Australia, December 2–6, 2018, Revised
Selected Papers, Part II 14. Springer, 2019, pp. 317–333.

[14] W. Wang, D. Ceylan, R. Mech, and U. Neumann, “3dn: 3d deformation
network,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2019, pp. 1038–1046.

[15] T. Groueix, M. Fisher, V. G. Kim, B. C. Russell, and M. Aubry, “3d-
coded: 3d correspondences by deep deformation,” in Proceedings of the
european conference on computer vision (ECCV), 2018, pp. 230–246.

[16] M. E. Yumer and N. J. Mitra, “Learning semantic deformation flows
with 3d convolutional networks,” in Computer Vision–ECCV 2016: 14th
European Conference, Amsterdam, The Netherlands, October 11-14,
2016, Proceedings, Part VI. Springer, 2016, pp. 294–311.

[17] H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller, “Multi-view
convolutional neural networks for 3d shape recognition,” in Proceedings
of the IEEE international conference on computer vision, 2015, pp. 945–
953.

[18] X. Chen, H. Ma, J. Wan, B. Li, and T. Xia, “Multi-view 3d object
detection network for autonomous driving,” in Proceedings of the IEEE
conference on Computer Vision and Pattern Recognition, 2017, pp.
1907–1915.

[19] D. Maturana and S. Scherer, “Voxnet: A 3d convolutional neural net-
work for real-time object recognition,” in 2015 IEEE/RSJ international
conference on intelligent robots and systems (IROS). IEEE, 2015, pp.
922–928.

[20] A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom,
“Pointpillars: Fast encoders for object detection from point clouds,”
in Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 2019, pp. 12 697–12 705.

[21] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on
point sets for 3d classification and segmentation,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2017, pp.
652–660.

[22] H. Zhao, L. Jiang, J. Jia, P. H. Torr, and V. Koltun, “Point transformer,”
in Proceedings of the IEEE/CVF international conference on computer
vision, 2021, pp. 16 259–16 268.

[23] K. M. Svore, A. V. Aho, A. W. Cross, I. Chuang, and I. L. Markov,
“A layered software architecture for quantum computing design tools,”
Computer, vol. 39, no. 1, pp. 74–83, 2006.

[24] T. Dang, K. Nguyen, and M. Huber, “Perfc: An efficient 2d and 3d
perception software-hardware framework for mobile cobot,” in The
International FLAIRS Conference Proceedings, vol. 36, 2023.

[25] ——, “Extperfc: An efficient 2d and 3d perception hardware-software
framework for mobile cobot,” arXiv preprint arXiv:2306.04853, 2023.

[26] T. Dang, T. Tran, K. Nguyen, T. Pham, N. Pham, T. Vu, and P. Nguyen,
“iotree: a battery-free wearable system with biocompatible sensors for
continuous tree health monitoring,” in Proceedings of the 28th Annual
International Conference on Mobile Computing And Networking, 2022,
pp. 769–771.

[27] M. P. Do Carmo, Differential geometry of curves and surfaces: revised
and updated second edition. Courier Dover Publications, 2016.

[28] M. Meyer, M. Desbrun, P. Schröder, and A. H. Barr, “Discrete
differential-geometry operators for triangulated 2-manifolds,” in Visu-
alization and mathematics III. Springer, 2003, pp. 35–57.

[29] M. Kazhdan, M. Bolitho, and H. Hoppe, “Poisson surface recon-
struction,” in Proceedings of the fourth Eurographics symposium on
Geometry processing, vol. 7, 2006, p. 0.

[30] H.-S. Fang, C. Wang, M. Gou, and C. Lu, “Graspnet-1billion: A large-
scale benchmark for general object grasping,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, 2020,
pp. 11 444–11 453.

[31] R. Wang, J. Zhang, J. Chen, Y. Xu, P. Li, T. Liu, and H. Wang,
“Dexgraspnet: A large-scale robotic dexterous grasp dataset for general
objects based on simulation,” arXiv preprint arXiv:2210.02697, 2022.

[32] M. Jaderberg, K. Simonyan, A. Zisserman et al., “Spatial transformer
networks,” Advances in neural information processing systems, vol. 28,
2015.

[33] P. J. Besl and N. D. McKay, “Method for registration of 3-d shapes,”
in Sensor fusion IV: control paradigms and data structures, vol. 1611.
Spie, 1992, pp. 586–606.

	Introduction
	Related Work
	Overview of Robot System
	3D Deformable Object Generation
	Smooth-Regularization ARAP Deformation
	3D Deformable Object Generation
	3D Scanning Real-World Objects
	Downsampling Point Clouds
	Identifying Graspable Region
	Sampling Handle Points
	Handle Points for Multiple Deformations
	Orientation of Handle Points
	Intensities of Deformation
	Generating Deformed Meshes

	3D Deformable Object Classification
	Evaluation & Experimental Results
	Deformation Loss for Auto-Generated Dataset
	Chamfer Distance Loss
	Mesh Edge Loss
	Mesh Normal Loss
	Laplacian Smoothing Loss

	Performance of Classifier with Different Design Choices
	Data Splitting
	Training Performance of Classification Network
	Model Sizes & Numbers of Trainable Parameters
	Testing Performance of Classification Network

	Deployment on Baxter Robot
	Experimental Setup
	Capturing Point Cloud at Multiple Views
	Mutiview Point Cloud Registration
	Region of Interest of Registered Point Cloud
	Object Classification using OpenVINO
	Time Complexity on Conventional Hardware

	Demonstration

	Limitations & Future Works
	Conclusions
	References

